Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis

نویسندگان

  • Annereinou R Dijkstra
  • Wynand Alkema
  • Marjo J C Starrenburg
  • Jeroen Hugenholtz
  • Sacha A F T van Hijum
  • Peter A Bron
چکیده

Recently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups of genes associated with robustness towards heat and/or oxidative stress. To investigate if other strains have similar or distinct transcriptome signatures for robustness, we applied an identical transcriptome-robustness phenotype matching approach on the L. lactis strains IL1403, KF147 and SK11, which have previously been demonstrated to display highly diverse robustness phenotypes. These strains were subjected to an identical fermentation regime as was performed earlier for strain MG1363 and consisted of twelve conditions, varying in the level of salt and/or oxygen, as well as fermentation temperature and pH. In the exponential phase of growth, cells were harvested for transcriptome analysis and assessment of heat and oxidative stress survival phenotypes. The variation in fermentation conditions resulted in differences in heat and oxidative stress survival of up to five 10-log units. Effects of the fermentation conditions on stress survival of the L. lactis strains were typically strain-dependent, although the fermentation conditions had mainly similar effects on the growth characteristics of the different strains. By association of the transcriptomes and robustness phenotypes highly strain-specific transcriptome signatures for robustness towards heat and oxidative stress were identified, indicating that multiple mechanisms exist to increase robustness and, as a consequence, robustness of each strain requires individual optimization. However, a relatively small overlap in the transcriptome responses of the strains was also identified and this generic transcriptome signature included genes previously associated with stress (ctsR and lplL) and novel genes, including nanE and genes encoding transport proteins. The transcript levels of these genes can function as indicators of robustness and could aid in selection of fermentation parameters, potentially resulting in more optimal robustness during spray drying.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fermentation-induced variation in heat and oxidative stress phenotypes of Lactococcus lactis MG1363 reveals transcriptome signatures for robustness

BACKGROUND Lactococcus lactis is industrially employed to manufacture various fermented dairy products. The most cost-effective method for the preservation of L. lactis starter cultures is spray drying, but during this process cultures encounter heat and oxidative stress, typically resulting in low survival rates. However, viability of starter cultures is essential for their adequate contributi...

متن کامل

Microbial domestication signatures of Lactococcus lactis can be reproduced by experimental evolution.

Experimental evolution is a powerful approach to unravel how selective forces shape microbial genotypes and phenotypes. To this date, the available examples focus on the adaptation to conditions specific to the laboratory. The lactic acid bacterium Lactococcus lactis naturally occurs on plants and in dairy environments, and it is proposed that dairy strains originate from the plant niche. Here ...

متن کامل

Natural sweetening of food products by engineering Lactococcus lactis for glucose production.

We show that sweetening of food products by natural fermentation can be achieved by a combined metabolic engineering and transcriptome analysis approach. A Lactococcus lactis ssp. cremoris strain was constructed in which glucose metabolism was completely disrupted by deletion of the genes coding for glucokinase (glk), EII(man/glc) (ptnABCD), and the newly discovered glucose-PTS EII(cel) (ptcBAC...

متن کامل

Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons.

In previous studies, we have shown that direct protein-protein interaction between the two regulators ArgR and AhrC in Lactococcus lactis is required for arginine-dependent repression of the biosynthetic argC promoter and the activation of the catabolic arcA promoter. Here, we establish the global ArgR and AhrC regulons by transcriptome analyses and show that both regulators are dedicated to th...

متن کامل

Transcriptional regulation of fatty acid biosynthesis in Lactococcus lactis.

Here we study the influence of the putative fatty acid biosynthesis (FAB) regulator FabT (originally called RmaG [Llmg_1788]) on gene transcription in Lactococcus lactis MG1363. A strain with a knockout mutation of the putative regulator was constructed, and its transcriptome was compared to that of the wild-type strain. Almost all FAB genes were significantly upregulated in the knockout. Using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016